NONCOOPERATIVE LIGAND BINDING: HOW STRONGLY DOES AZIDE BIND TO MYOGLOBIN?

Caution: Since azide binds to myoglobin and hemoglobin, it is a poison to all animals that utilize heme-containing proteins to transport O_2 (this includes you!). Wear goggles and gloves while in the laboratory and dispose of all solutions in the proper waste container.

Stock solutions:

2 mM metmyoglobin (Mb) 20 mM Sodium Phosphate buffer pH 7.4 0.500 mM Sodium azide 0.500 mM Sodium Chloride

Tube	[Mb] (mM)	[azide] (mM)	[NaCl] (mM)	Total Vol. (mL)
1	0.050	0.00000	0.16667	3.00
2	0.050	0.00083	0.16583	3.00
3	0.050	0.00250	0.16417	3.00
4	0.050	0.00500	0.16167	3.00
5	0.050	0.01000	0.15667	3.00
6	0.050	0.01500	0.15167	3.00
7	0.050	0.02000	0.14667	3.00
8	0.050	0.04000	0.12667	3.00
9	0.050	0.06000	0.10667	3.00
10	0.050	0.10000	0.06667	3.00
11	0.050	0.16667	0.00000	3.00

Table 1: Myoglobin Binding Set

Lab Activity

Mix each of the solutions described in Table 1 in glass test tubes. Be sure to add myoglobin last to each solution. Allow each solution to reach equilibrium (~30 minutes at room temp). Blank the spectrophotometer with Tube 1. Record the absorbance at 425 nm of each solution in Table 1.

Data Analysis

Your data should fit to the following equation where $A_{observed}$ is the observed absorbance at 425 nm, A_{max} is the absorbance of metmyoglobin bound to azide, and θ is the fractional saturation as defined in the classroom/pre-lab activity:

$$A_{observed} = A_{max}\theta$$

- 1. Use non-linear regression with Microsoft Excel to solve for the A_{max} and K_D parameters. Determine the standard deviations associated with each fit parameter.
- 2. In utilizing the above derived equation, it is assumed that the $[N_3^-]_{free}$ is approximated

by the $[N_3^-]_T$.

- a. How does your best-fit value for the $K_{\rm D}$ of azide to metmyoglobin compare to $[{\rm Mb}]_T?$
- b. Is $[N_3^-]_{free}$ well approximated by $[N_3^-]_T$ for your experiment?

3. The expression for θ which includes $[N_3]_T$ rather than $[N_3]_{free}$ takes on a quadratic form:

$$\theta = \frac{\left([Mb]_T + [N_3^-]_T + K_D \right) - \sqrt{\left([Mb]_T + [N_3^-]_T + K_D \right)^2 - \left(4(Mb]_T [N_3^-]_T \right)}}{2[Mb]_T}$$

Use non-linear regression with Microsoft Excel to solve for the A_{max} and K_D parameters using this expression for θ that does not make assumptions about $[N_3^-]_{free}$. Determine the standard deviations associated with each fit parameter.

- 4. Are the best-fit K_D values for the two models significantly different?
- 5. Using the best-fit value of A_{max}, covert each A_{observed} into a theta value:

$$\theta = \frac{A_{observed}}{A_{max}}$$

- 6. Make a plot of θ versus $\left[N_{3}^{-}\right]_{T}$. This should be hyperbolic.
- 7. Make a plot of $\log\left(\frac{\theta}{1-\theta}\right)$ versus $\log\left[N_3^{-}\right]_T$. This is called a Hill plot. Add a linear trendline to your data points.

8. Use algebra to define an expression for $\log\left(\frac{\theta}{1-\theta}\right)$ from your expression for θ from your

pre-lab.

- a. What does the slope of the Hill plot indicate?
- b. What does the y-intercept on a Hill plot indicate?
- c. How does the best-fit value for the K_D from the Hill plot compare to the best-fit values from the non-linear models?